Difference between revisions of "Significance testing - Effective Base"
(6 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
Survey data is often weighted, at times to balance sampling bias (e.g. obtain a market-distribution representation of gender and age) and at other times weighting to obtain a representation of sales, population, etc. | Survey data is often weighted, at times to balance sampling bias (e.g. obtain a market-distribution representation of gender and age) and at other times weighting to obtain a representation of sales, population, etc. | ||
− | Weighting actually inflates the "number of answers" per respondents, at times by a relatively large factor. When performing significance testing, we ideally wish to utilize the weighted data to capture the intent of the weighting, however, as | + | Weighting actually inflates the "number of answers" per respondents, at times by a relatively large factor. When performing significance testing, we ideally wish to utilize the weighted data to capture the intent of the weighting, however, as significance testing is impacted by the scale of the weighted values, weighted significance testing can be impacted adversely by weighting, in particular in cases in which weights represent large factors, say x10 or x100 or more. |
+ | |||
+ | In these cases, the effective base calculation can remove the influence of the numerically large weighted values while capturing the intent of the weighting. Basically, effective base is used as a safeguard against making statistical conclusions from a sample that has been drastically adjusted (using weights) to match target values like sales or population. | ||
− | |||
The effective base is calculated using the following formula: | The effective base is calculated using the following formula: | ||
− | |||
effective base = (sum of weight factors) squared / sum of the squared weight factors. | effective base = (sum of weight factors) squared / sum of the squared weight factors. | ||
− | If the data for a particular column is as follows | + | If the data for a particular column is as follows: |
Total unweighted 40 | Total unweighted 40 | ||
Line 15: | Line 15: | ||
Total weighted 40 | Total weighted 40 | ||
− | and comes from 12 women and 28 men | + | and comes from 12 women and 28 men: |
− | effective base = (12*1. | + | {| |
+ | |- | ||
+ | ! !! Sample !! Sample% !! Population% !! Weight=Pop%/Sam% | ||
+ | |- | ||
+ | | women || 12 || 30% || 52% || 1.7333 | ||
+ | |- | ||
+ | | men || 28 || 70% || 48% || 0.6857 | ||
+ | |} | ||
+ | |||
+ | then the effective base is: | ||
+ | |||
+ | effective base = (12*1.7333 + 28*0.6857)**2 / (12*(1.7333**2)+(28*(0.6857)**2) | ||
= 1600 / 49.2162 = 32.509 | = 1600 / 49.2162 = 32.509 | ||
+ | |||
+ | Applying Effective Base: | ||
+ | |||
+ | From mTAB's spreadsheet view, select menu items Data, then Significance Indicators. | ||
+ | |||
+ | Click on the "Effective Base" checkbox from the resultant Significance Indicator dialog. |
Latest revision as of 18:21, 27 November 2013
Survey data is often weighted, at times to balance sampling bias (e.g. obtain a market-distribution representation of gender and age) and at other times weighting to obtain a representation of sales, population, etc.
Weighting actually inflates the "number of answers" per respondents, at times by a relatively large factor. When performing significance testing, we ideally wish to utilize the weighted data to capture the intent of the weighting, however, as significance testing is impacted by the scale of the weighted values, weighted significance testing can be impacted adversely by weighting, in particular in cases in which weights represent large factors, say x10 or x100 or more.
In these cases, the effective base calculation can remove the influence of the numerically large weighted values while capturing the intent of the weighting. Basically, effective base is used as a safeguard against making statistical conclusions from a sample that has been drastically adjusted (using weights) to match target values like sales or population.
The effective base is calculated using the following formula:
effective base = (sum of weight factors) squared / sum of the squared weight factors.
If the data for a particular column is as follows:
Total unweighted 40
Total weighted 40
and comes from 12 women and 28 men:
Sample | Sample% | Population% | Weight=Pop%/Sam% | |
---|---|---|---|---|
women | 12 | 30% | 52% | 1.7333 |
men | 28 | 70% | 48% | 0.6857 |
then the effective base is:
effective base = (12*1.7333 + 28*0.6857)**2 / (12*(1.7333**2)+(28*(0.6857)**2)
= 1600 / 49.2162 = 32.509
Applying Effective Base:
From mTAB's spreadsheet view, select menu items Data, then Significance Indicators.
Click on the "Effective Base" checkbox from the resultant Significance Indicator dialog.